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We study the motion of a fluid within a rigid spherical container subject to small-
amplitude periodic rotations. The sphere is divided into two equal portions by an
impermeable stretched elastic membrane whose boundary is attached to the container
wall. The model aims to represent in a simplified fashion the dynamics of a vitreous
membrane subject to microsaccadic movements of the human eye, assuming the
vitreous to be liquefied. The vitreous is modelled as a Newtonian, incompressible
fluid in irrotational motion and the problem is linearized, taking advantage of the
hypothesis of small-amplitude eye rotations. Results show that, due to the presence of
the fluid, the natural frequencies of oscillation of the membrane decrease significantly
with respect to the case of a free membrane. Moreover, oscillations of a stretched
membrane are found to be resonantly excited by rotations of the sphere with
frequencies which are typical of microsaccadic eye movements. This study suggests
the possibility that oscillations of vitreous membranes may induce the development
of large tensile stresses capable of producing a retinal detachment. Such a conclusion
will have to be further substantiated by more refined analyses accounting for further
effects, such as nonlinearity and the possible viscoelastic behaviour of the vitreous
located on one or both sides of the membrane.

1. Introduction
The problem investigated in the present work is based on a somewhat idealized

model of the dynamics of vitreous membranes. Though the physiological relevance
of the present model may require further substantiation in future developments, the
subject of vitreous hydrodynamics which motivated the present work provides a useful
introduction.

The vitreous body is a transparent gel-like structure located in the posterior
chamber of the eye. In the normal eye of an adult, the vitreous occupies a volume of
approximately 4 ml and it constitutes from 3/5 to 2/3 of the total volume and weight
of the eye globe. The density of the vitreous is equal to 1005.3 Kg m−3 (Tolentino,
Schepens & Freeman 1976). Its major constituents are water, soluble proteins,
hyaluronic acid, collagen and a small population of cells, designated as hyalocytes
(Klintworth & Scroggs 1997). From the mechanical point of view the human vitreous
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Figure 1. (a) Vitreous membrane separating liquefied vitreous from gel; (b) stretched vitreous
membrane which has caused a retinoschisis, i.e. a break of the retina (from Tolentino et al.
1976, with permission from Elsevier).

is a viscoelastic material, whose characteristics depend on age and vary within the
vitreous cavity (Lee, Litt & Buchsbaum 1992). The gelatinous consistency of the
vitreous is due to a framework of numerous, randomly oriented, collagen fibrils. With
advancing age the vitreous often loses its consistency and undergoes a liquefaction
process.

Particular intraocular processes, such as inflammatory states and haemorrhages,
may lead to the formation of membranes within the vitreous, which split the
vitreous body into separate regions (see figure 1a, b). Vitreous membranes can develop
under diverse conditions, indicating that multiple factors may be involved in their
pathogenesis. Membranes display highly variable thickness and size and can be loose
or stressed. It is customary to classify membranes according to the following criteria:
(i) membranes surrounded by gel, (ii) membranes surrounded by liquefied vitreous
and (iii) membranes separating gel from liquefied vitreous (Tolentino et al. 1976). The
formation of vitreous membranes does not necessarily represent a dangerous medical
condition; indeed membranes may form in the vitreous cavity without causing damage
to the retina or sight reduction. However, as described by Tolentino et al. (1976),
membranes may produce retinal lesions of different nature if they are attached to the
retina and exert stresses on it. Such stresses may arise from a progressive contraction
of the membrane (static stresses) or may be generated by eye movements (dynamic
stresses). Though the latter classification of stresses induced by membranes on the
retina is only based on clinical observations, it is however the basis of several therapies.
Therefore, founding clinical practice on a better understanding of vitreous dynamics
in the presence of vitreous membranes is desirable.

The hydrodynamics of the normal vitreous during ocular movements has been
the subject of recent investigations. David et al. (1998) have studied the motion of
vitreous humour of the human eye during saccadic movements. The aim of their
work was to estimate the shear stress acting on the retina during saccadic movements
in order to ascertain the existence of a correlation between retinal detachment and
occurrence of high shear stress at the retina. The authors modelled the eye as a rigid
sphere subject to sinusoidal oscillations, while vitreous humour was modelled either
as a Newtonian fluid or as a viscoelastic material, whose constitutive behaviour was
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interpreted through a Maxwell–Voigt model. Their results show that, as the so-called
Womersley number increases, the flow driven by eye rotations is confined within a
Stokes-type layer of increasingly small thickness. This is a feature arising from the
almost purely diffusive nature of the flow field induced by the eye motion in the
perfectly symmetric geometry considered by David et al. The main result of the paper
is the suggestion that the maximum shear stress increases linearly with eye radius and
with the 3/2 power of the angular frequency of the eye rotations. The larger frequency
of retinal detachment in myopic eyes, which are known to be characterized by sizes
larger than normal eyes, may thus be related to an increased shear stress. A further
interpretation of the higher risk of retinal detachment in myopic eyes had already
been given by David et al. (1997) who studied the time-dependent shear force on the
eye wall shell during saccadic movements. They found that, taking into account the
reduction of the eye wall thickness, the increased eye radius and increased muscular
force that characterize myopic eyes, the shear force in the eye wall may be up to
seven times larger than in normal eyes; this corresponds to a significantly higher risk
of retinal detachment.

It is finally worth citing a recent work of González & Fitt (2003) regarding
some aspects of the mathematical modelling of human eyes. They have studied
the mathematics of tonometry, i.e. a technique which is often employed in the
measurement of intraocular pressure. The head of the tonometer is used to compress
the frontal part of the cornea: from the force required to flatten the cornea the
intraocular pressure is computed on the basis of an empirical principle known as
the Imbert–Fick principle, which was established over a century ago. González &
Fitt have assumed the eye to be a linearly elastic hollow sphere and have determined
a relationship between the flattening force and the internal pressure, showing the
Imbert–Fick principle to be valid when the intraocular pressure is not very much
higher than its physiological value. The mathematical model developed for the
tonometry problem has also been used by González & Fitt to investigate problems
related to scleral buckling, a surgical technique often employed to treat retinal
detachment. The paper ends with a stimulating account of some open problems con-
cerning the mechanics of the human eye that will deserve attention from researchers
in the future.

In the present paper we formulate an idealized hydro-elastic model in order to
obtain some insight into the question of whether a vitreous membrane surrounded by
liquefied vitreous may respond with large-amplitude oscillations to eye rotations, thus
inducing abnormally high tractions on the retina. In particular we focus our attention
on high-frequency, small-amplitude eye rotations, which Ashe et al. (1991) define
“microsaccadic flutter”. Such movements, which are characterized by amplitudes
lower than 1◦ and frequencies ranging between 15 and 30 Hz, can barely be observed
clinically without special equipment. However, they have the extremely important
role of permitting a scan of the fine detail of the image projected onto the fovea, the
central region of the retina where the larger concentration of light receptors is found.

The assumption of small-amplitude eye rotations allows us to tackle the problem
through a linearized mathematical model. Moreover, we assume the fluid to be
Newtonian and we consider a perfectly spherical eye globe separated into two
equal regions by an impermeable, stretched, elastic vitreous membrane. The above
assumptions are fairly restrictive as the vitreous may not be liquefied on both sides
of the membrane and the membrane is not necessarily pre-stressed. Though under
admittedly idealized conditions, the paper shows that the natural frequencies of
vitreous membranes are strongly reduced by the presence of the fluid phase, to the
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Figure 2. (a) Sketch of the problem and notation; (b) sketch of a globe section and notation.

extent that, for realistic values of the relevant physical parameters, vitreous membranes
may resonate at frequencies close to those typical of microsaccadic movements of
the eye. Such a finding suggests that the question of whether vitreous membrane
oscillations may produce dynamic tensile stresses on the retina such to induce its
detachment deserves attention. In order to ascertain whether such a finding has
actual clinical relevance, various developments of the present investigation will be
needed. In particular, a worthwhile development will be to remove the assumption
of linearity in order to be able to evaluate the dynamic stresses developing in the
membrane. Moreover, the case of membranes which are not pre-stressed, as well
as configurations in which membranes separate liquefied vitreous from gel or are
completely surrounded by gel, also deserve attention. Finally, we point out that
the presence of vitreous membranes is one among many possible causes of retinal
detachment.

The rest of the paper is organized as follows. In § 2 we formulate the mathematical
problem describing the dynamics of the vitreous–membrane system. In § 3 we describe
the procedure employed to solve the hydrodynamic problem and discuss the results
concerning the flow fields. Section 4 is devoted to the solution of the membrane
equation; both free vibrations and oscillations forced by eye movements are analysed.
Finally, some concluding remarks in § 5 complete the paper.

2. Formulation of the problem
We study the three-dimensional flow of a fluid within a spherical container subject

to periodic rotations. The interior of the sphere is divided into two equal regions
separated by an impermeable, stretched, elastic membrane and the boundary of the
membrane is fixed at the container wall. A sketch of the geometry under consideration
is given in figure 2(a, b). Two systems of cylindrical coordinates will be employed:
(r∗, θ, z∗) describes the absolute fluid motion with respect to a fixed coordinate
system; and (ρ∗, ϑ, ζ ∗) will be used to represent the absolute motion in terms of
time-dependent coordinates rotating with the sphere. The line identified by θ = 0, π
remains coincident with that identified by ϑ = 0, π and, at time t∗, the ζ ∗-axis is
rotated about this line through the angle β(t∗) with respect to the z∗-axis. An asterisk
denotes dimensional variables that will later be made dimensionless. As shown in
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the sketches presented in figure 2(a, b) the unperturbed position of the membrane
is described by the equation ζ ∗ = 0. Below, we formulate the problem for the fluid
contained in the upper region of the container, the problem for the lower fluid being
identical.

We treat the liquefied vitreous as an incompressible Newtonian fluid with the same
mechanical characteristics (density ρv and viscosity) on both sides of the membrane.
This hypothesis seems sensible in the case of liquefied vitreous, a situation encountered
in practice.

We assume the flow to be irrotational. In fact, we assume that the vorticity generated
at the sidewall remains confined within thin Stokes layers adjacent to the boundaries
which may be neglected at leading order. This hypothesis is likely to be appropriate
everywhere except close to the sharp junction between the membrane and the spherical
wall, where a stagnation line of the relative motion occurs. To what extent such an
assumption may affect the validity of the analysis can ultimately be ascertained by
performing a fully viscous analysis.

The assumption of irrotational flow allows us to introduce a velocity potential,
defined as ∇φ∗ = u∗, where u∗ is the velocity. The velocity u∗

r relative to a
frame rotating with the eye is not irrotational: indeed, one readily finds that
∇ × u∗

r =(0, 0, 2Ω∗), where Ω∗ = dβ/dt∗ is the angular velocity of the reference
frame. The problem is formulated with respect to a fixed frame, using the cylindrical
coordinates (r∗, θ, z∗) sketched in figure 2. The velocity potential φ∗ being harmonic,
we can write

1

r∗
∂

∂r∗

(
r∗ ∂φ∗

∂r∗

)
+

1

r∗2

∂2φ∗

∂θ2
+

∂2φ∗

∂z∗2
= 0. (2.1)

At the eye wall we impose the requirement of no flux through the boundary:

∂φ∗

∂r∗ r∗ +
∂φ∗

∂z∗ z∗ = 0 (r∗2 + z∗2 = R2), (2.2)

with R denoting the eye radius. Furthermore, the kinematic condition at the membrane
states that the membrane is a material surface. If the equation of the membrane
interface is written in the form z∗ = h∗(r∗, θ, t∗) (see figure 2b) the kinematic condition
is

∂h∗

∂t∗ +
∂h∗

∂r∗
∂φ∗

∂r∗ +
1

r∗2

∂h∗

∂θ

∂φ∗

∂θ
− ∂φ∗

∂z∗ = 0 (z∗ = h∗). (2.3)

The dynamic pressure p∗ enters the problem through Bernoulli’s theorem, which, for
a fluid in unsteady irrotational motion leads to the following relationship:

p∗

ρv

+
1

2

[(
∂φ∗

∂r∗

)2

+
1

r∗2

(
∂φ∗

∂θ

)2

+

(
∂φ∗

∂z∗

)2
]

+
∂φ∗

∂t∗ = 0, (2.4)

holding throughout the flow field. We recall that φ∗ is defined up to an arbitrary
function of time which can be absorbed into φ∗ by suitably redefining the potential
function.

At this stage it is convenient to perform the following coordinate transformation:

ρ∗ =

√
(r∗ cos θ)2 + (r∗ sin θ cos β + z∗ sin β)2, (2.5a)

ϑ = arctan

(
r∗ sin θ cos β + z∗ sin β

r∗ cos θ

)
, (2.5b)

ζ ∗ = z∗ cos β − r∗ sin θ sin β, (2.5c)
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where, as pointed out above, the coordinate system (ρ∗, ϑ, ζ ∗), shown in figure 2,
rotates with the sphere. The variable h∗ can then be written in terms of the new
coordinates as

h∗ = η∗ cos β + ρ∗ sin ϑ sin β, (2.6)

where η∗ denotes the displacement of a point of the membrane in the ζ ∗-direction.
In terms of the new coordinates the differential system (2.1), (2.2) and (2.3) takes a
complicated and lengthy form which is not reported here for the sake of brevity. A
linearized dimensionless version of these equations will be presented below.

In order to complete the formulation of the problem we need to introduce a further
equation describing the motion of the membrane. This equation is coupled with the
flow field through the effect of fluid stresses acting on the membrane which are in turn
determined by the membrane motion. In the following, viscous stresses associated with
the motion of the membrane will be neglected: such an assumption seems reasonable
since the normal component of viscous stresses can be expected to be much smaller
than the dynamic pressure and the membrane is assumed to be subject to an elastic
pre-stress much larger than the viscous tangential stresses induced by fluid motion.

The dynamics of a stretched circular elastic membrane is a classical problem of
mathematical physics (see for instance Courant & Hilbert 1937). In the present paper
we consider a homogeneous membrane. Moreover, we assume that the stretching
force per unit length T , i.e. the force per unit length acting on each side of any cut
through the membrane, is large enough to justify neglecting the direct effect of angular
velocity and acceleration on the membrane. In other words membrane oscillations
with respect to its undisturbed position, which rotates with the eye globe, are only
induced by variations of the fluid stresses acting on the membrane. Finally, we assume
small oscillations about the undisturbed position, so that the displacement of each
point of the membrane is aligned with the direction of the ζ ∗-axis.

According to the above hypotheses the equation governing the motion of the
membrane can be directly written in terms of the cylindrical coordinates (ρ∗, ϑ, ζ ∗):

∂2η∗

∂t∗2
− c2

(
∂2η∗

∂ρ∗2
+

1

ρ∗
∂η∗

∂ρ∗ +
1

ρ∗2

∂2η∗

∂ϑ2

)
+

p′∗

σm

− p′′∗

σm

= 0, (2.7)

where c2 = T/σm, with σm being the mass of the membrane per unit area, and where
p′∗ and p′′∗ represent the pressure at the membrane in the upper and lower portions
of the container, respectively. It is noted that, membrane oscillations being of small
amplitude, it follows that the elastic stress remains constant.

We must explicitly point out at this stage that the above formulation of the
membrane equation does not a priori ensure that the membrane oscillations satisfy
the physical constraint that the fluid volume must be preserved. However, it will be
shown below that the solution forced by the sphere rotations, which is of interest for
the present work, satisfies this requirement.

We consider small-amplitude periodic oscillations of the container; hence we write

β(t∗) = δ sin(ωot
∗), δ � 1. (2.8a, b)

Furthermore, in order to formulate the problem in dimensionless form, we define the
following dimensionless variables:

(ρ, ζ, η) =
(ρ∗, ζ ∗, η∗)

R
, φ =

φ∗

ωcR2
, t = ωct

∗, p =
p∗

ρvω2
cR

2
. (2.9a–d)
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In the above expressions ωc represents a characteristic scale of the frequency of
oscillations of the membrane. In the following both free oscillations and oscillations
forced by eye movements will be considered. In the latter case ωc has to be chosen
equal to the frequency of eye rotations ωo. In the case of free membrane oscillations
the choice of ωc has been based on scaling arguments. By balancing the order of
magnitude of the first term in equation (2.7) with that of the terms involving spatial
derivatives, we find

ωc =
c

R
. (2.10)

The assumption of small-amplitude rotations of the container, mathematically
expressed by (2.8b), allows us to linearize the problem. We then introduce the following
expansion:

(φ, η, p) = δ(φ1, η1, p1) + O(δ2), (2.11)

and keep only the order-δ terms in all the equations. We thus derive the dimensionless
linearized form of equations (2.1), (2.2) and (2.3), written in terms of the coordinate
system (ρ, ϑ, ζ ):

1

ρ

∂

∂ρ

(
ρ

∂φ1

∂ρ

)
+

1

ρ2

∂2φ1

∂ϑ2
+

∂2φ1

∂ζ 2
= 0, (2.12a)

∂φ1

∂ρ
ρ +

∂φ1

∂ζ
ζ = 0 (ρ2 + ζ 2 = 1), (2.12b)

∂η1

∂t
− ∂φ1

∂ζ
+ ρ sin ϑ cos t = 0 (z = 0) . (2.12c)

Finally, Bernoulli’s equation (2.4) takes the following linearized form:

p1 +
∂φ1

∂t
= 0. (2.13)

3. Solution for the flow field
We now expand the function η1(ρ, ϑ, t), representing the membrane displacement,

in Fourier–Bessel series. The structure of the forcing term appearing in equation
(2.12c) suggests that only the first mode in the azimuthal direction is directly forced
by eye rotations, therefore only this azimuthal mode will be considered. We then write

η1(ρ, ϑ, t) =

∞∑
m=1

em(t) sin ϑJ1(αmρ), (3.1)

where J1 represents the order-1 Bessel function of the first kind and αm

(m = 1, 2, . . . , ∞) represent the zeros of such a function. Notice that the constraint
whereby the fluid volume must be preserved is indeed satisfied by the above expansion.
Moreover, we note that, since the αm are the zeros of the Bessel function J1, it follows
that η1 automatically vanishes at the boundary (ρ = 1).

The boundary condition at the membrane (2.12c) suggests expanding the velocity
potential in the form

φ1(ρ, ϑ, ζ, t) =

∞∑
m=1

ψm(ρ, ζ ) sin ϑ
dem(t)

dt
+ χ(ρ, ζ ) sin ϑ cos t, (3.2)
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Figure 3. Spatial structure of the flow field induced by oscillation of (a) mode 1 and (b) mode 2
of the membrane in the plane identified by the line ϑ = π/2, 3/2π and the ζ -axis. The velocity
field is computed as the gradient of the functions ψ1 and ψ2, respectively. Vector length scales
in the two plots are the same.

where φ1 is decomposed into two parts: one forced by the membrane oscillations and
the other, proportional to the function χ , forced by the container rotation.

Substituting from the expansions (3.1) and (3.2) into the differential problem (2.12a–
c), we find the following differential problems for ψm (m = 1, 2, . . . , ∞) and χ :

∂2ψm

∂ρ2
+

1

ρ

∂ψm

∂ρ
+

∂2ψm

∂ζ 2
− ψm

ρ2
= 0, (3.3a)

ρ
∂ψm

∂ρ
+ ζ

∂ψm

∂ζ
= 0 (ρ2 + ζ 2 = 1), (3.3b)

∂ψm

∂ζ
= J1(αmρ) (ζ = 0), (3.3c)

ψm = 0 (ρ = 0). (3.3d)

∂2χ

∂ρ2
+

1

ρ

∂χ

∂ρ
+

∂2χ

∂ζ 2
− χ

ρ2
= 0, (3.4a)

ρ
∂χ

∂ρ
+ ζ

∂χ

∂ζ
= 0 (ρ2 + ζ 2 = 1), (3.4b)

∂χ

∂ζ
= ρ (ζ = 0), (3.4c)

χ = 0 (ρ = 0). (3.4d)

The above problems are solved numerically through a second-order finite difference
scheme using a system of polar coordinates in the (ρ, ζ )-plane. The solution procedure
is based on the ADI method which leads to solving a sequence of tridiagonal algebraic
systems obtained by sweeping the computational mesh by rows and then by columns
(see for instance Tannehill, Anderson & Pletcher 1997). A mesh of 80 × 80 points has
been adopted; numerical tests indicate that, with a computational mesh of 160 × 160
points, results do not change up to the fourth significant figure. Moreover, we have
assumed that convergence was reached when the relative error on the solution was
lower that 10−8.

In figure 3(a, b) the spatial structure of flow fields obtained by the numerical
solution of the Laplace equation for ψm is shown in the plane identified by the line
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Figure 4. Spatial structure of the flow field induced by container rotations in the plane
identified by the line ϑ = π/2, 3/2π and the ζ -axis; the membrane is kept rigid. The absolute
velocity field is computed as the gradient of the function χ: (a) absolute velocity, (b) relative
velocity. Vector length scales in the two plots are the same.

ϑ = π/2, 3/2π and the ζ -axis for the first two spatial modes of oscillation of the
membrane. It is noted that, as the spatial mode increases, the effect of membrane
oscillations on the flow field diminishes increasingly quickly far from the membrane.
In other words only oscillations of the first few modes give rise to significant velocities
within the vitreous body.

The flow field induced by container rotations with the membrane kept rigid is
obtained by solving the problem for the unknown function χ . In figure 4(a, b), the
spatial structure of the absolute and relative velocity fields is shown in the plane ident-
ified by the line ϑ = π/2, 3/2π and the ζ -axis. Figure 4(b) shows that the relative
velocity generates a circulation cell, with a sense of rotation opposite to that of the
container.

4. Solution of the equation of the membrane
4.1. Free oscillations

Let us next consider the problem of determining the free oscillations of the membrane.
To this end we assume the container wall to be still, which mathematically implies
that the function χ vanishes identically.

As pointed out above, the characteristic frequency of free membrane oscillations
ωc can be estimated by equation (2.10). With such a choice equation (2.7) takes the
following dimensionless form:

∂2η1

∂t2
−

(
∂2η1

∂ρ2
+

1

ρ

∂η1

∂ρ
+

1

ρ2

∂η1

∂ϑ2

)
+ Γ1(p

′
1 − p′′

1 ) = 0, (4.1)

where Γ1 is the only controlling dimensionless parameter of the problem, defined as

Γ1 =
ρvR

σm

. (4.2)

In order to solve equation (4.1) we need to compute the pressure distribution at
the membrane, i.e. at ζ = 0, using the equation (2.13). It is noted that the structure of
expansion (3.1) suggests that the flow field generated by the membrane oscillations,
and consequently the pressure distribution acting on the membrane, are antisymmetric
about the membrane. Therefore, the total stress p′

1 − p′′
1 acting on the membrane can
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Figure 5. The frequencies of oscillation of modes 1 and 2 of the membrane plotted versus
the dimensionless parameter Γ1.

be written as 2p1 where we denote by p1 the pressure of the upper fluid, evaluated at
the membrane.

To solve equation (4.1) it is convenient to expand in Bessel series the potential
functions ψm, evaluated at the membrane, in the form

ψm(ρ, 0) =

∞∑
k=1

ψ̂mkJ1(αkρ). (4.3)

According to equations (2.13), (3.2) and (4.3) the pressure distribution acting at the
membrane can be written as

p1 = −
∞∑

m=1

∞∑
k=1

ψ̂mkJ1(αkρ) sin ϑ
d2em(t)

dt2
. (4.4)

Substituting (3.1) and (4.4) into (4.1) we find, after some manipulations involving
properties of the Bessel functions, the following system of homogeneous linear
ordinary differential equations:

ëm + α2
mem − 2Γ1

∞∑
k=1

ψ̂kmëk = 0, (4.5)

where an over dot denotes time derivatives. The above system is best written in matrix
form as

Më + Ke = 0, (4.6)

where M is referred to as the ‘mass matrix’ and K as the ‘stiffness matrix’. Due to the
non-dissipative nature of the problem the dynamical behaviour of the system consists
of pure oscillations. The frequencies of oscillation are given by the square roots of
the eigenvalues of the matrix M−1K.

In figure 5 the dimensionless natural frequencies of oscillation ω of the first two
modes of the membrane are plotted versus the parameter Γ1. Notice that, for vanishing
values of Γ1, we recover the case of free membrane oscillations in the absence of fluid.
In such a case it is well known that the natural frequencies of oscillation are given
by the zeros of the Bessel function. For increasing values of the parameter Γ1 the
dimensionless frequencies of oscillation significantly decrease. In other words, as could
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be expected by recalling results obtained in different contexts (see for instance Gottlieb
& Aebisher 1986, 1989), when the membrane vibrates in the fluid the characteristic
frequencies decrease. Such an effect indicates a strong coupling between the fluid and
the membrane dynamics, even in a linear context.

The thickness of vitreous membranes typically ranges between tens and hundreds of
microns. With the membrane density about 1000 Kg m−3, the dimensionless parameter
Γ1 takes values ranging from 50 to 200. It is noted that, within this range of values
of Γ1, the dimensionless frequencies of oscillations do not display a strong variability.
Obviously, as far as the dimensional frequencies are concerned, the above results
crucially depend on the intensity of the stretching force per unit length T acting
on the membrane: the larger T is, the higher the natural frequencies of oscillation.
Unfortunately, to our knowledge, no measurements of T are available yet; indeed
direct in vivo measurements of the stretching force acting on a vitreous membrane are
almost impossible. However, we recall that, according to the medical literature, the
stress acting on the membrane is often large enough to cause a retinal detachment. The
present work concerns membranes which have not yet caused a retinal detachment
and it is therefore possible to estimate an upper bound for the stress acting on the
membrane based on measurements of the adhesive strength between the retina and
the epithelium. According to Wu, Peters & Hammer (1987) the failure load per unit
length of retina ranges between 0.4 and 0.6 Nm−1; moreover the authors state that
“. . . the tensile strength of retina is roughly twice the adhesive strength of retina to
pigment epithelium”. Therefore, one may expect that the maximum stretching force
per unit length T , which does not cause a retinal detachment, would be in the range
of about 0.2–0.3 N m−1. Using for T the value 0.1 Nm−1, the dimensional frequency of
oscillation of the first mode takes values of about tens of Hz, i.e. values comparable
with the frequency of microsaccadic eye movements, which range between 15 and
30 Hz.

4.2. Forced oscillations

We now consider the motion of the membrane forced by eye rotations. In this case,
the characteristic frequency of oscillations being equal to ωo, equation (2.7) takes the
following dimensionless form:

∂2η1

∂t2
− 1

Γ 2
2

(
∂2η1

∂ρ2
+

1

ρ

∂η1

∂ρ
+

1

ρ2

∂η1

∂ϑ2

)
+ 2Γ1p1 = 0, (4.7)

where Γ2 is the dimensionless parameter

Γ2 =
ωoR

c
, (4.8)

representing the dimensionless forcing frequency. A particular solution of equation
(4.7) is obtained from equation (3.1) by setting

em(t) = gm sin t, (4.9)

where gm are constants to be determined.
In analogy with the approach employed for the functions ψm, the potential function

χ computed at the membrane, is also expanded in Bessel series as

χ(ρ, 0) =

∞∑
m=1

χ̂mJ1(αmρ), (4.10)
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Figure 6. The amplitude A of membrane oscillations is plotted versus the dimensionless
parameter Γ2 for different values of Γ1.

and the pressure distribution at the membrane can be written in the form

p1 =

∞∑
m=1

J1(αmρ)

(
χ̂m +

∞∑
k=1

ψ̂kmgk

)
sin t sin ϑ. (4.11)

Substituting (3.1), (4.9) and (4.11) into (4.7) we obtain the following non-homogeneous
linear algebraic system:

gm

(
1 − α2

m

Γ 2
2

)
− 2Γ1

∞∑
k=1

ψ̂kmgk = 2Γ1χ̂m, (4.12)

whose solution is readily found numerically.
In figure 6 the amplitude A of membrane oscillations, calculated by taking into

account the first 20 modes, is plotted versus Γ2 for given values of Γ1. Realistic values
of the parameter Γ2, corresponding to microsaccadic frequencies and to values of the
force per unit length T of order 0.1 Nm−1 or less, are expected to be larger than 0.1.
Moreover, since for the present analysis to be valid we need T to be sufficiently large,
computations have been restricted to the range 0.1 <Γ1 < 1.5.

Figure 6 shows that periodic rotations of the container may resonantly excite
membrane oscillations. Resonance occurs when the forcing frequency is close to
one of the natural frequencies of the system. Close to resonant conditions, the
present linear model fails and a nonlinear approach is required to evaluate the
actual amplitudes experienced by the membrane oscillations. If we start from a very
low forcing frequency and then progressively increase it, we first find the resonant
excitation of the first spatial mode. Further increasing Γ2, resonance of all higher
modes is progressively excited, as clearly shown in figure 6.

On the basis of the considerations reported above regarding the order of magnitude
of the physical quantities involved in the problem, we can finally argue that
microsaccadic eye movements may resonantly excite membrane oscillations for values
of the membrane stress that can easily be encountered in practice.

Finally, in figure 7(a, b), typical spatial structures of the absolute flow fields are
shown in the plane identified by the line ϑ = π/2, 3/2π and the ζ -axis for two
different sets of values of the dimensionless parameters Γ1 and Γ2, corresponding to
sub-resonance (a) and super-resonant (b) conditions. The differences between the two
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Figure 7. Spatial structure of the flow field induced by container rotations in the plane
identified by the line ϑ = π/2, 3/2π and the ζ -axis: (a) Γ1 = 100, Γ2 = 0.32; (b) Γ1 = 100,
Γ2 = 0.58.

flow fields, which are best appreciated close to the membrane, are due to the different
phase of membrane oscillations relative to the eye movements in the two cases. In
other words we recover the well-known feature of linear oscillators (see for instance
Thompson & Stewart 1986) that they display a sudden phase shift of the oscillator
response relative to the forcing when the resonance frequency is crossed.

5. Final remarks
We have formulated a somewhat idealized model of the dynamics of vitreous

membranes driven by microsaccadic eye movements. The main ingredients of the
model are as follows. The vitreous has been treated as an incompressible fluid in
irrotational motion and the membrane has been assumed to be impermeable, elastic
and pre-stressed.

In spite of its simplicity, the present model provides some insight into the oscillatory
behaviour of the membrane–vitreous system. In particular, the analysis shows that,
as expected, the presence of the fluid strongly decreases the natural frequencies of
oscillation of the membrane. The model also shows that microsaccadic eye movements
may resonantly excite membrane oscillations for values of the membrane stress T

which may easily occur in practice. Under resonant conditions the amplitude of
membrane oscillations attains large values, hence large dynamic stresses are expected
to occur in the membrane, possibly causing retinal detachment. The above results
suggest extending the present investigation in order to ascertain the actual clinical
relevance of such findings.

In particular, in order to formulate a more realistic model, it will be necessary to
remove some of the constraints imposed in the present work:

the amplitude of the membrane oscillations should be allowed to attain finite values,
calling for a fully nonlinear treatment of the problem;

the effect of removing the pre-stressed character of the membrane should be
analysed;

the possibility that the rheological behaviour of vitreous on one or both sides of
the membrane be viscoelastic will also require treatment;

finally, it may be worth investigating the possible effect of membrane permeability
on the vitreous dynamics.



14 R. Repetto, I. Ghigo, G. Seminara and C. Ciurlo

Some of the above developments would benefit from an experimental investigation
performed on a large-scale model of the eye.

Rodolfo Repetto thanks Professor A. Luongo for many helpful suggestions during
the development of the analysis and acknowledges useful discussions with Dr L.
Carassale, Professor M. Vasta and Dr F. Grillo. Particular thanks is also due to
Professor G. Ciurlo for drawing our attention on the clinical relevance of the problem
considered in the present paper. The constructive criticism of anonymous referees
has helped improving the presentation of the paper. The work has been funded by
MIUR, under the project FIRB (RBAU01Z44F 005).
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